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The phenomenon of bursting, in which streaks in turbulent boundary layers oscillate
and then eject low-speed fluid away from the wall, has been studied experimentally,
theoretically and computationally for more than 50 years because of its importance
to the three-dimensional structure of turbulent boundary layers. Five new three-
dimensional solutions of turbulent plane Couette flow are produced, one of which
is periodic while the other four are relative periodic. Each of these five solutions
demonstrates the breakup and re-formation of near-wall coherent structures. Four
of our solutions are periodic, but with drifts in the streamwise direction. More
surprisingly, two of our solutions are periodic, but with drifts in the spanwise direction,
a possibility that does not seem to have been considered in the literature. It is argued
that a considerable part of the streakiness observed experimentally in the near-wall
region could be due to spanwise drifts that accompany the breakup and re-formation
of coherent structures. A new periodic solution of plane Couette flow is also computed
that could be related to transition to turbulence.

The violent nature of the bursting phenomenon implies the need for good resolution
in the computation of periodic and relative periodic solutions within turbulent shear
flows. This computationally demanding requirement is addressed with a new algorithm
for computing relative periodic solutions one of whose features is a combination
of two well-known ideas – namely the Newton–Krylov iteration and the locally
constrained optimal hook step. Each of the six solutions is accompanied by an error
estimate.

Dynamical principles are discussed that suggest that the bursting phenomenon, and
more generally fluid turbulence, can be understood in terms of periodic and relative
periodic solutions of the Navier–Stokes equation.

1. Introduction
Turbulent boundary layers are characterized by a viscous sublayer, in which the

mean streamwise velocity nearly equals the distance from the wall in wall units,
a buffer layer, and a logarithmic boundary layer. The impressive agreement of
theoretical predictions of the mean streamwise velocity in the viscous sublayer and the
logarithmic boundary layer with experiment (Monin & Yaglom 1971, p. 273) and with
computation (Kim, Moin & Moser 1987) can be considered an outstanding success
in the effort to understand turbulence in fluid flows. It was initially believed that the
flow in the viscous sublayer was laminar, but experiments in the 1950s and 1960s led
to the conclusion that random fluctuations exist in this layer even though the mean
streamwise velocity in this layer had a laminar profile (Monin & Yaglom 1971, p. 270).

The phenomenon of bursting became evident during investigations of the viscous
sublayer and the buffer region (Klebanoff, Tidstrom & Sargent 1962; Kline et al.
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1967). In this phenomenon, streaks in the near-wall region breakup and re-form in
a striking manner. Much of the turbulent energy production occurs in the buffer and
viscous layers (Kline et al. 1967) and the three-dimensional structure of turbulent
boundary layers appears to be intimately related to bursting. Because of this
connection and because of the striking nature of the phenomenon itself, bursting has
been the subject of numerous experimental (Klebanoff et al. 1962; Kline et al. 1967;
Smith & Metzler 1983; Acarlar & Smith 1987; Bech et al. 1995) and computational
or theoretical studies (Hamilton, Kim & Waleffe 1995; Holmes, Lumley & Berkooz
1996; Itano & Toh 2001, 2005; Kawahara & Kida 2001; Schoppa & Hussain 2002;
Jiménez et al. 2005). There has been some discussion in the literature of exactly what
is meant by bursting (Itano & Toh 2001; Jiménez et al. 2005). In this paper, bursting
will always refer to the breakup and re-formation of coherent structures, such as
streaks, in turbulent buffer regions.

Although bursting has been much studied, its dynamics has proved elusive. A large
number of mechanisms have been proposed to explain bursting (Klebanoff et al. 1962;
Kline et al. 1967; Hamilton et al. 1995; Itano & Toh 2001; Schoppa & Hussain 2002).
The word mechanism in this context does not refer to new physical principles. There
is no doubt that the incompressible Navier–Stokes equation is adequate to explain the
dynamics of bursting, and the physics of bursting is the physics that goes into that
equation and its boundary conditions. However, as is well known, the nature of the
solutions of the Navier–Stokes equation in the turbulent regime is poorly understood.
These mechanisms try to provide a way to understand approximately some solutions
of the Navier–Stokes equation.

Although approximate, some mechanisms can be useful for computing exact solu-
tions, as shown by the construction of travelling-wave and steady solutions of channel
flows by Waleffe (1998, 2001, 2003). The method introduced in that body of work
was later adapted to pipe flows (Faisst & Eckhardt 2003; Wedin & Kerswell 2004).
However, the breakup and re-formation of coherent structures cannot be studied
using travelling waves or steady solutions.

It is certainly very desirable to find exact solutions of the Navier–Stokes equation
that correspond to bursting. These solutions will provide a solid and reliable route
to understanding the dynamics of bursting. In this context, it is noteworthy that the
self-sustaining process mechanism suggested the existence of periodic solutions that
correspond to bursting (Hamilton et al. 1995; Waleffe 1997; Kawahara & Kida 2001).
We follow Hamilton et al. (1995) and conduct our computations using plane Couette
flow at a Reynolds number (Re) of 400. In plane Couette flow, two parallel walls move
in opposite directions with equal speed and drive the fluid in-between. The Reynolds
number is based on half the separation between the walls and half the difference
between the wall velocities. To render the computational domain finite, we assume
the domain to be periodic in the streamwise and spanwise directions, with periods
equal to 2πΛx and 2πΛz. Unless otherwise stated, our computations use Λx = 0.875
and Λz = 0.6 to facilitate comparison with earlier computations and because of the
particular advantages of this box described in Hamilton et al. (1995). The walls are
assumed to be at y = ±1, with the upper wall moving in the x or streamwise direction
in the positive sense with speed equal to 1.

It is known experimentally that the details of bursting in the near-wall region are
remarkably similar over a wide range of Reynolds numbers (Smith & Metzler 1983).
Thus, our use of Re= 400 in plane Couette flow is an acceptable choice. Turbulent
spots have been observed in plane Couette flow experiments at Re = 360 (Bech et al.
1995).
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Symbol Label sx/2πΛx sz/2πΛz T/T + λmax Reτ (2L, M, 2N ) Error

∗ P1 0 0 82.7/167 24.5 56.9 (32, 64, 48) 10−7

� P2 0.15 −0.28 70.9/197 12.2 66.3 (48, 64, 48) 10−5

� P3 0.03 0 77.1/216 4.4 + i3.6 66.9 (64, 56, 48) 10−5

� P4 0.01 0.08 102.7/287 5.1 + i16.4 66.8 (48, 48, 32) 10−3

� P5 0.22 0 91/266 −11.5 68.4 (48, 64, 48) 10−4

∇ P6 0 0 87.9/259 −14.6 68.6 (48, 64, 48) 10−5

Table 1. Data for six periodic and relative periodic solutions of plane Couette flow labelled
P1 to P6. The symbols in the first column are used to distinguish between these solutions in
later plots. The shifts sx and sz are explained in the text. The T/T + column gives the period,
with T + being the period in wall units. λmax is the maximum characteristic multiplier. The
last three columns report the frictional Reynolds number, the resolution of the computational
grid, and the relative error in the computation.

Table 1 gives data for six periodic or relative periodic solutions that we computed.
The final velocity field obtained by integrating the initial velocity field over one full
period is equal to the initial velocity field for periodic solutions. However, for relative
periodic solutions the final velocity field is equal to the initial velocity field after shifts
of sx and sz in the streamwise and spanwise directions, respectively. These shifts,
which are reported in table 1, are 0 for both P1 and P6. Thus, both those solutions
are periodic. The equations of plane Couette flow are unchanged by translations in
the streamwise and spanwise directions. The existence of relative periodic solutions is
possible because of those invariances.

Frictional velocity and frictional length can be obtained using the mean shear at
the wall (Monin & Yaglom 1971, p. 265). Those quantities are the basis of wall units.
Throughout this paper, wherever wall units are used, the mean shear is obtained by
averaging at the upper wall over one single period of a periodic or relative periodic
solution. Following standard practice, the use of wall units is signalled by a +
superscript. The frictional Reynolds number Reτ was obtained using the mean shear
at the upper wall and the distance between the two walls. Table 1 shows that the Reτ

for P1 is significantly lower than it is for the other solutions. This is because P1 alone
is related to transition to turbulence, while all the others are related to bursting.

Kawahara & Kida (2001) found a periodic solution of plane Couette flow with
period equal to 85.5 which appears similar to P1. However, their solution satisfies the
shift-reflection and shift-rotation symmetries of plane Couette flow (Kawahara 2005).
Although P1 has zero mass flux in the streamwise direction like their solution, it is
far from satisfying either symmetry, as will be shown. Therefore P1 is a new solution.
The bursting solutions P2 to P6 are all new, and we will argue that these are the first
computations of bursting periodic or relative periodic solutions that demonstrably
correspond to solutions of the Navier–Stokes equation.

All the characteristic multipliers λmax given in table 1 are outside the unit circle,
which implies instability of the solutions P1 to P6. Yet we report relative errors for all
these solutions. A relative error of 10−7 implies that the computed solution matches
a solution of the Navier–Stokes equation up to at least 7 digits. The manner in which
these error estimates were found is explained in § 3. Significantly, these error estimates
can be verified using any good DNS (direct numerical simulation) code in spite of
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the instability of the underlying solutions. Such quantitative reproducibility is a step
forward for turbulence computations.

The numbers 2L, M and 2N in table 1 give the number of grid points in the x, y

and z directions. We used a Fourier grid in the x and z directions and a Chebyshev
grid in the y direction. Good spatial resolution is the key to finding solutions that are
not numerical artefacts. Hamilton et al. (1995) and Kawahara & Kida (2001) used
(2L, M, 2N) = (16, 32, 16) in their plane Couette-flow computations. The evidence for
striking recurrences and the existence of periodic solutions offered in these works
is significant. However, estimates for spatial discretization error described in § 3
imply that the spatial discretization error with (2L, M, 2N) = (16, 32, 16) for bursting
solutions is at least 5 % and can be twice as much.

In § 2, we describe a new method for finding periodic and relative periodic solutions.
The number of degrees of freedom that determine the initial velocity field for P3 is
319 790 and the number of degrees of freedom for P2, P5 and P6 is 273 918. These
numbers exceed the number of degrees of freedom in any earlier computation of
periodic solutions by at least a factor of 20, and our method can also compute relative
periodic solutions. One feature of the method is a combination of the Newton–Krylov
iteration (Kelley 2003; Sancheź et al. 2004) with the locally constrained optimal hook
step (Dennis & Schnabel 1996). The locally constrained optimal hook step is related
to the Levenberg–Marquardt procedure and is a well-established idea in optimization.
However, its possibilities seem to have been largely overlooked in computations of
periodic and steady solutions. The combination of Newton–Krylov iterations with
the locally constrained optimal hook step is simple, but powerful. It is much more
effective than the often used damped Newton iteration.

In § 4, we develop the connection of the computations summarized in table 1 to
the dynamics of the bursting phenomenon. There has been some discussion about
whether the near-wall bursting observed experimentally is due to the advection of
coherent objects or to the breakup and re-formation of coherent objects (Jiménez
et al. 2005). The relative periodic solutions reported in table 1, and especially the
spanwise drifts of P2 and P4, will be shown to be significant in this respect.

In § 5, we discuss our belief that a good route to understanding the dynamics of
a differential equation is by computing its solutions and recognizing the relationship
between those solutions. We discuss dynamical principles that suggest that infinitely
many periodic and relative periodic motions can be found within turbulent flows.
About half a century ago, a common belief was that linearly stable solutions are
observed in nature and in experiment, while the unstable ones are not. Although
these infinitely many periodic and relative periodic motions are certain to be linearly
unstable, their instability is only a manifestation of the instability of turbulent flows.
In spite of their instability, these solutions are relevant both to natural phenomena
and experiment as we demonstrate in § 4 and as we argue in § 5.

The idea of understanding phenomena using well-resolved and linearly unstable
nonlinear solutions is beginning to take root in work on the transition to turbulence
in shear flows (Kerswell 2005). Linearly unstable nonlinear travelling waves have
been observed in a pipe flow experiment (Hof et al. 2004). Although transition to
turbulence in pipe and channel flows is still an unsolved problem, there can be
little doubt that the nonlinear travelling waves such as those observed by Hof et al.
(2004) will be an important part of an eventual solution of the transition problem.
Periodic and relative periodic solutions are the next step for understanding turbulent
phenomena such as bursting.
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2. A numerical method for finding relative periodic solutions
This section describes a numerical method for finding periodic and relative periodic

solutions in plane Couette flow. Although the description of the numerical method
is specific to plane Couette flow, it can easily be adapted to other partial differential
equations. Our method has three new aspects. First, we describe a way to find good
initial guesses. Secondly, we show how to set up the Newton equations for finding
relative periodic solutions. Thirdly, we show how to modify the Newton–Krylov
procedure to compute the locally constrained optimal hook step.

The Navier–Stokes equation for incompressible flow takes the form

∂u/∂t + (u · ∇)u = −(1/ρ)∇p + (1/Re)�u (2.1)

with the incompressibility constraint implying ∇ · u = 0. For plane Couette flow, the
boundary conditions are u = (±1, 0, 0) at the walls (which are at y = ±1) in the y or
wall-normal direction, and periodic in the other two directions with periods equal to
2πΛx and 2πΛz. The equation cannot be viewed as a dynamical system when written
in this form because the velocity field u must satisfy the zero divergence condition
and there is no explicit equation for evolving the pressure p in time. It is necessary
to rewrite the equation as a dynamical system for the purpose of computing periodic
and relative periodic solutions.

The pressure term can be completely eliminated by recasting (2.1) in terms
of the wall-normal velocity v(x, y, z), the wall-normal vorticity η(x, y, z), and the
mean components ū(y) and w̄(y) of the streamwise and spanwise velocities. The
boundary conditions become ū(±1) = ±1, w̄(±1) = 0, and v(x, ±1, z) = vy(x, ±1, z) =
η(x, ±1, z) = 0. The velocity field u can be constructed from ū, w̄, v and η using
∇ · u = 0. The velocity component v and the vorticity component η are discretized in
the x and z directions using Fourier modes. For example,

v(x, y, z) =
∑

−L<l<L
−N<n<N

v̂l,n(y) exp

(
ilx

Λx

+
inz

Λz

)
, (2.2)

where the dependence on t is not shown explicitly. The Fourier modes η̂l,n are defined
by replacing v by η in (2.2).

Kim et al. (1987) proposed a good numerical method for integrating the Navier–
Stokes equation using this formulation and we follow their approach. The Navier–
Stokes equation (2.1) becomes a dynamical system in this formulation.

We use a Fourier grid with 2L and 2N points in the x and z directions, but we
always set the modes with l = L or n= N equal to 0. We use M +1 Chebyshev points
in the y direction. After spatial discretization, the dynamical system has approximately
8LMN degrees of a freedom. Taking into account the boundary conditions on ū, w̄,
v and η, the treatment of modes with l =L or n= N , and the fact that the mean
components of v and η are always zero gives 2(M −1)+(2M −4)((2N −1)(2L−1)−1)
as the exact number of degrees of freedom. It is important to find the exact number of
degrees of freedom. The spatially discretized system can be thought of as a dynamical
system of the form Ẋ = f (X), where the 2(M − 1) + (2M − 4)((2N − 1)(2L − 1) − 1)
components of X encode ū, w̄, v and η. All the components of X are real numbers.

Our code implements the nonlinear terms in advection, rotation and skew-symmetric
forms. The viscous terms are treated implicitly and the advection terms are treated
explicitly when discretizing time. The code employs dealiasing using the 3/2 rule in
the x and z directions. The code was tested using three-dimensional modes of the
Orr–Sommerfeld equation and in various other ways.
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Figure 1. The projection of a trajectory of plane Couette flow onto the energy dissipation
(D) and energy input (I ) plane.

2.1. Finding initial guesses

To find an initial guess for a relative periodic solution, we begin by looking at
projections of trajectories to the energy dissipation and energy input plane. The rate
of energy dissipation per unit volume for plane Couette flow is given by

D =
1

8π2ΛxΛz

∫ 2πΛz

0

∫ +1

−1

∫ 2πΛx

0

|∇u|2 + |∇v|2 + |∇w|2 dx dy dz, (2.3)

and the rate of energy input per unit volume is given by

I =
1

8π2ΛxΛz

∫ 2πΛx

0

∫ 2πΛz

0

∂u

∂y

∣∣∣
y=1

+
∂u

∂y

∣∣∣
y=−1

dx dz. (2.4)

For the laminar solution (u, v, w) = (y, 0, 0), both D and I are normalized to evaluate
to 1.

The trajectory that starts at A in figure 1 appears to come close at B; but that close
approach is not significant because even distant points in phase space can coincide in
a two-dimensional projection. What we look for is the resemblance of the shape of
the trajectory from B onwards with the shape of the trajectory from A onwards. In
figure 1, the trajectory that begins at A develops a protrusion in the upper right-hand
part of the figure, but the trajectory that begins at B does not. Therefore, A would not
be a good initial guess for a relative periodic solution. If it were, we would examine
velocity fields on the trajectory near B , and shift them in the streamwise and spanwise
directions to bring them as close to A as possible. The initial guesses for the period
and the shifts would be determined following that examination.

2.2. Newton equations for finding relative periodic solutions

Given the Fourier representation (2.2) of v(x, y, z), the Fourier representation of
v(x + sx, y, z + sz) is given by

v(x + sx, y, z + sz) =
∑

−L<l<L
−N<n<N

exp

(
ilsx

Λx

)
exp

(
insz

Λz

)
v̂l,n(y) exp

(
ilx

Λx

+
inz

Λz

)
. (2.5)
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Define the operators T1 and T2 by

T1v(x, y, z) =
∑

−L<l<L
−N<n<N

il

Λx

v̂l,n(y) exp

(
ilx

Λx

+
inz

Λz

)
, (2.6a)

T2v(x, y, z) =
∑

−L<l<L
−N<n<N

in

Λz

v̂l,n(y) exp

(
ilx

Λx

+
inz

Λz

)
. (2.6b)

The operators T1 and T2 are infinitesimal generators of the group of translations
along the streamwise and spanwise directions. The shift in (2.5) is given by exp(sxT1)
exp(szT2)v(x, y, z). To shift a velocity field given by ū, w̄, v and η by sx along x and
by sz along z, we need only apply exp(sxT1) exp(szT2) to v and η. To shift a velocity
field encoded by X0, we can convert X0 to ū, w̄, v, η, shift v and η, and then convert
back. The shift operation on X0 will be denoted by exp(sxT1) exp(szT2)X0.

The Navier–Stokes equations for plane Couette flow are unchanged by shifts in
the x and z directions. In terms of Ẋ = f (X), this property becomes f (exp(sxT1)
exp(szT2)X) = exp(sxT1) exp(szT2)f (X).

To find a relative periodic solution of plane Couette flow, we have to find an initial
velocity field X0, a period T , and shifts sx and sz such that

exp(−sxT1) exp(−szT2)X(T ; X0) = X0. (2.7)

We first set up the Newton iteration, although the Newton iteration by itself is
entirely inadequate. Let X̃0, sx , sz, T be our initial guess for solving (2.8) and let
Y0 = exp(−sxT1) exp(−szT2)X(T ; X̃0). Then the relative error in the initial guess is
given by

‖Y0 − X̃0‖/‖X̃0‖. (2.8)

If we assume X̃0 + δX0, sx + δsx , sz + δsz, T + δT to be the solution of (2.8) that is
close to the initial guess and linearize about the initial guess, we obtain

(δsx)(−T1Y0) + (δsz)(−T2Y0) + (δT )f (Y0) + exp(−sxT1) exp(−szT2)
∂X(T ; X̃0)

∂X̃0

δX0

= δX0 + (X̃0 − Y0). (2.9)

The number of equations in the linear system (2.9) is the same as the dimension of X̃0

or δX0. Three more equations are necessary to have as many equations as unknowns:

δX∗
0(T1X̃0) = 0, δX∗

0(T2X̃0) = 0, δX∗
0f (X̃0) = 0, (2.10a–c)

where δX∗
0 denotes the transpose of δX0. Since the Navier–Stokes equations for plane

Couette flow are unchanged by shifts in the x and z directions, shifting X̃0 in the x

or z directions will only shift Y0 in the x and z directions. Equations (2.10a, b) require
that the correction δX0 to X̃0 must not have components that shift X̃0 infinitesimally
in the x or z directions. If the correction δX0 slightly advances X̃0 along the flow
induced by Ẋ = f (X), the corrected velocity field will remain on the same orbit.
Equation (2.10c) requires that the correction δX0 must have no component along
f (X̃0). Equations (2.9) and (2.10) together constitute the Newton system.

It is convenient to rewrite the Newton system as Mσ = ρ, where σ =
(δX0; δsx; δsz; δT ) and ρ =(Y0 − X̃0; 0; 0; 0) are both column vectors. The structure of
M follows from (2.9) and (2.10).
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As evident from (2.9), the application of M to σ requires the computation of
(∂X(T ; X̃0)/∂X̃0)δX0. This directional derivative can be computed using differences
to about 7 digits of accuracy, which is entirely adequate.

2.3. Finding the locally constrained optimal hook step

The dimension of the linearized system M can exceed 3 × 105 for periodic solutions
such as P3, and it is impractical to form the Newton system explicitly. The Newton
step σ can be found, however, using a Krylov subspace method such as GMRES
which is described in Trefethen & Bau (1997), for example.

Often periodic solutions and steady states are computed within a bifurcation-
continuation scenario (as in Sancheź et al. 2004). We are not in such a scenario here
and the Newton step by itself never leads to convergence. The widely used expedient
of damping the Newton step is also ineffective.

The locally constrained optimal hook step is based on the idea that given a radius
r within which we trust the linearization, the best step σ is obtained by minimizing
‖Mσ − ρ‖ subject to the constraint ‖σ‖ � r (Dennis & Schnabel 1996). The radius
of the trust region is varied from step to step by comparing the actual reduction
in error following the step with the reduction in error predicted by the linearization
(Dennis & Schnabel 1996).

We show how to compute the locally constrained optimal hook step within a
Krylov subspace. Let Qd and Qd+1 be matrices with d and d + 1 orthonormal
columns obtained by applying GMRES with the starting vector ρ. The columns of
these matrices are orthonormal bases for Krylov subspaces of dimensions d and d +1.
Before trying to find the locally constrained optimal hook step, we make sure that
d is large enough to permit a solution of the Newton equation Mσ = ρ with small
relative residual error given by ‖Mσ − ρ‖/‖ρ‖. Let Hd+1,d be the upper Hessenberg
matrix that satisfies MQd = Qd+1Hd+1,d . We minimize ‖Hd+1,dσd − Q∗

d+1ρ‖ subject to
the constraint ‖σd‖ � r . The solution of this minimization problem for σd using the
singular value decomposition of Hd+1,d is feasible because d is typically a number
smaller than 30. Once σd is found, the locally constrained optimal hook step is given
by Qdσd .

2.4. Computing travelling-wave solutions

The method for computing relative periodic solutions can be modified to compute
travelling-wave solutions. Only minimal modifications are necessary. Instead of
allowing the period T to vary from iteration to iteration, the first modification is
to fix T at a value that is definitely smaller than the period of any periodic or relative
periodic solution. The second modification is to drop (2.10c) to obtain a square system
of equations for δX0, δsx and δsz. The speed of the travelling wave in the streamwise
and spanwise directions will be given by sx/T and sz/T , respectively.

The basis of this approach for computing travelling-wave solutions is the
observation that the initial velocity field of a travelling-wave solution is a fixed
point of the time T map of the flow, if the final velocity field is shifted by appropriate
amounts sx and sz in the streamwise and spanwise directions. The shifts depend upon
the wave speeds as indicated in the previous paragraph.

In some cases, symmetries of the velocity field may imply that the travelling wave
must be a steady solution (Waleffe 2003). For computing travelling waves in general,
we solve for sx and sz to determine the wave speeds; but if it is known in advance
that the wave speeds are zero, we set sx = sz =0 and drop (2.10a, b). We moved some
of Waleffe’s travelling wave solutions (Waleffe 2003), whose data are posted publicly,
from a 32 × 34 × 32 grid to finer grids, with (2L, M, 2N) = (48, 73, 48) or better, and
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Figure 2. The dependence of the global error, obtained by integrating P1 for one full period,
on the time step for numerical integrators of second- and third-order. The second-order
integrator used was Crank–Nicolson–Adams–Bashforth and the third-order method was the
(4, 3, 3) method of Ascher, Ruuth & Spiteri (1997).

then refined the solutions to better accuracy. During the refinement, the period T

was fixed at 1 or 5 or 10, with larger values of T implying faster convergence of the
GMRES iteration. The refined solutions too were invariant under the shift-reflection
and shift-rotation symmetries.

3. Verifiability of computed relative periodic solutions
Although the solutions reported in table 1 are all linearly unstable, they can all be

verified using a good DNS code for channel flow, as will be shown in this section.
We also explain how the error estimates reported in the last column of table 1 were
derived.

The characteristic multipliers λmax reported in table 1 are all greater than 1,
but less than 100 in magnitude. For characteristic multipliers in that range, the
errors due to time discretization can be made negligible. To see that, consider the
initial-value problem ẋ = f (x), x(0) = x0. The global error after time T is defined as
‖x̃(T ; x0) − x(T ; x0)‖, where x̃(T ; x0) is the numerical approximation to the solution
x(T ; x0) at time T . For an integrator of order r , the global error is asymptotically
equal to E(T )hr in the limit of small h. Indeed, explicit formulae can be obtained for
the function E(T ) (Viswanath 2001). Those formulae indicate that E(T ) will increase
with λmax for the solutions in table 1. However, as indicated by the asymptotic formula
and as demonstrated in figure 2, the global error can be made quite small by taking
a small time step. For all six solutions in table 1, we carried out computations similar
to that shown in figure 2 and chose a time step small enough to make the time
discretization errors irrelevant. The final computations were all carried out using a
third-order implicit–explicit Runge–Kutta method developed by Ascher et al. (1997).

The argument in the previous paragraph would have been invalid if some
characteristic multipliers were too large in magnitude. For instance, if λmax > 1015,
even the rounding errors would be amplified to an O(1) magnitude over a single
cycle. In such situations, multiple shooting must be used.

Thus if the system Ẋ = f (X) is obtained by spatially discretizing the Navier–Stokes
equation (2.1) and we compute a relative periodic solution of that system with a small



348 D. Viswanath

100 101 102 100 101 102
10–20

10–15

10–10

10–5

105

100

n/Λzl/Λx

0 20 40 60
m

10–25

10–20

10–15

10–10

10–5

100

(a) (b) (c)

10–15

10–10

10–5

100

Figure 3. The variation of the energy with (a) streamwise and (b) spanwise wavenumbers for
the relative periodic solution P6. The energies are computed using the slice y =0 and at eight
equally spaced instants along the period of P6. (c) The magnitude of the energy in wall-normal
Chebyshev mode against the Chebyshev mode at eight equally spaced instants along the period
of P6.

enough time step, how close the computed solution is to a true periodic solution of
the Navier–Stokes equation is entirely determined by the spatial discretization error.

We estimate the spatial discretization error in two ways. The first is to graph energy
against streamwise wavenumber, spanwise wavenumber, and wall-normal Chebyshev
mode as shown in figure 3. Figures 3(a) and 3(b) do not show the energy that
corresponds to the wavenumber 0. Because the Chebyshev polynomials are not
orthogonal with respect to the Lebesgue measure, the decomposition of the energy
into Chebyshev modes is necessarily somewhat arbitrary. We defined

E(y) =

∫ 2πΛz

0

∫ 2πΛx

0

u(x, y, z)2 + v(x, y, z)2 + w(x, y, z)2 dx dy,

and expressed E(y) as a linear combination of Chebyshev polynomials to obtain
figure 3(c). More specifically, if E(y) =

∑M

m =0 cmTm(y), where Tm(y) are Chebyshev
polnomials, figure 3(c) plots |cm| against m. Estimates for the discretization error
are obtained by taking the square root of the fraction of the energy in the highest
mode. Thus we will have streamwise, spanwise, and wall-normal estimates at each
point along the relative periodic solution. The worst of these estimates corresponds
to the direction that is less well-resolved than the other two, and the instant along
the solution where the velocity field is hardest to resolve.

Another possibly more reliable way to estimate the spatial discretization error is to
take the initial state of the computed relative periodic solution and then move it to
a much finer grid. The initial data is integrated on this finer grid using a sufficiently
small time step for one full period. The final state is then shifted using the shifts sx

and sz. The quantity

‖shifted final state − initial state‖
‖initial state‖

is taken as an estimate of the spatial discretization error.
In all six cases in table 1, these two methods gave comparable estimates for the

spatial discretization error. All the errors reported in table 1 were obtained using the
second method and a finer grid with (2L, M, 2N) = (64, 90, 64). As our discussion of
time discretization error makes clear, all the error estimates can be verified using a
good DNS code with a sufficiently small time step. Gibson used data about P1 that
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Figure 4. Energy dissipation (D) and energy input (I ) are defined by (2.3) and (2.4). The
periodic orbit in the lower left-hand corner is P1. The other orbits correspond to the solutions
P2 to P6 with the correspondence given by the symbols. The symbol for each periodic orbit is
given in table 1. A random turbulent trajectory is shown in the background.

had a relative error of 10−5 and verified that error estimate using his Channelflow
code (Gibson 2002).

4. Relative periodic solutions and the bursting phenomenon
The most striking thing about the bursting phenomenon in experiments is its

recurrent nature. As Acarlar & Smith (1987) state, ‘The study of boundary-layer
turbulence in the last thirty years has clearly demonstrated that the chaotic behaviour
referred to as turbulence has a systematic organization. Most researchers share a
common belief that a cyclic bursting phenomenon is the predominant mode of
turbulence production.’ In this section, we demonstrate the relevance of the periodic
and relative periodic solutions in table 1 to the bursting phenomenon.

4.1. Position of relative periodic solutions in phase space

A good preliminary idea of the relative location of solutions in phase space can be
formed by projecting the orbits to the (D, I )-plane (Kawahara & Kida 2001). The
normalization used for D and I in (2.3) and (2.4) is such that the laminar solution of
plane Couette flow is located at (1, 1). We immediately see from figure 4 that P1 is
much closer to the laminar solution than the other solutions. As mentioned earlier,
P1 is not a bursting solution, while the others are.

Greater energy dissipation is connected with steeper gradients in the flow. It is
therefore tempting to conclude that orbits that travel farther into the upper right-hand
corner of figure 4 are harder to resolve. That conclusion is true only approximately.
Plots of energy against wavenumber or Chebyshev mode look very similar to figure 3
for P2, P3, P4 and P5, but not for P1. The most striking aspect of the plots for P6

in figure 3 lies in the plot of energy against streamwise wavenumber. While at one
instant the energy falls by more than a factor of 1020 over the range of streamwise
wavenumbers represented in the computational grid, it falls by only a factor of about
108 at another instant. This striking change in energy distribution is directly related
to the breakdown of streaks and is observed in P2 to P6 but not in P1.
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The existence of periodic and relative periodic solutions is related to two general
principles in dynamics, namely the Poincaré recurrence theorem and the closing
lemma (Katok & Hasselblatt 1995). The recurrent nature of the bursting process was
observed in direct numerical simulation of plane Couette turbulence and motivated
the derivation of the self-sustaining process (Hamilton et al. 1995; Waleffe 1997). It
must be pointed out, however, that the right notion of recurrence in plane Couette
flow is not that of periodicity, but that of relative periodicity. This is because if an
initial velocity field for plane Couette flow is shifted in either the streamwise or the
spanwise direction, the final velocity fields after a certain time interval must be equal
to each other after exactly the same shifts. From the point of view of the dynamics,
velocity fields that are related by streamwise and spanwise shifts are equivalent.

The same general principles that suggest the existence of periodic and relative
periodic solutions that correspond to bursting, also suggest that there will be infinitely
many of them. Indeed, these solutions probably give the best or only means of
uncovering the ‘systematic organization’ found within turbulent boundary layers that
Acarlar & Smith refer to in the passage quoted at the beginning of this section. This
possibility will be discussed at length in § 5.

4.2. Near-wall statistics

Turbulent boundary layers can be divided into a viscous sublayer, a buffer layer, and
a logarithmic boundary layer (Monin & Yaglom 1971). In the viscous sublayer, which
is approximately 5 wall units thick, the mean streamwise velocity is nearly equal to
the distance from the wall in wall units. The buffer layer extends from 5 wall units
to approximately 25 or 30 wall units, and the logarithmic boundary layer begins
after that. The viscous stresses dominate in the viscous sublayer, while the Reynolds
stresses dominate in the logarithmic boundary layer. Both stresses are significant in
the buffer layer.

Figure 5(a) shows the dependence of the mean streamwise velocity upon the
distance from the wall. The averages are computed over one single period for each
periodic solution in all plots in figure 5. The law of the wall is reproduced correctly in
the viscous sublayer, but the logarithmic boundary layer is not fully developed. The
distance between the two moving walls in plane Couette flow in only about 70 wall
units or so for the solutions in table 1, which is one reason the logarithmic boundary
layer is not fully developed. Another related reason is that the frictional Reynolds
numbers in table 1 are too low for the logarithmic boundary layer to be fully formed.
A dynamical investigation of the interaction of structures away from the buffer region
with structures in the buffer region can be found in Itano & Toh (2005).

The most important features of bursting are in the buffer layer and these features
are reproduced correctly by P2 to P6 as shown by figures 5(a) and 5(b). Figure 5(b)
plots the turbulent intensity against the distance from the wall. The graphs for P2 to
P6 all have the right shape and the turbulent intensity peaks between 10 and 20 wall
units for each of those solutions. However, the peak is slightly elevated as compared
with the theory and experiments recorded in figure 27 of Monin & Yaglom (1971) or
with the ‘corrected’ experiment and computation recorded in figure 7 of Kim et al.
(1987). This elevation of the peak is a low-Reynolds-number effect. The peak of the
turbulence intensity compares well with figure 3 of (Jiménez et al. 2005).

The energy balance equation, which is obtained by applying the method of averaging
to the Navier–Stokes equation, is important both in theory and in practice (Monin &
Yaglom 1971). Physical interpretations can be associated with the terms of that
equation, and we will look at the so-called turbulent energy production term. This
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Figure 5. (a) The dependence of the mean streamwise velocity 〈u〉+ in wall units upon the
distance y+ from the upper wall, also in wall units. (b) The dependence of the turbulent
intensity as given by the root mean square streamwise velocity u′+ upon the distance from the
wall. (c) The dependence of turbulent energy production upon the distance from the wall. The
symbols correspond to the solutions P1 to P6 in table 1.

term is equal to

−〈u∗v∗〉∂〈u〉
∂y

,

where u∗ = u − 〈u〉 and v∗ = v − 〈v〉 are the fluctuating components of the streamwise
and wall-normal velocities and 〈u〉 is the mean streamwise velocity. In figure 5, the
turbulent energy production is expressed in wall units, although experimentalists do
not always use wall units for expressing turbulent energy production (Kline et al.
1967).

Turbulent energy production has a sharp peak in the buffer region for each of P2

to P6, as shown by figure 5(c). Turbulent energy production can be readily measured
in experiments and its sharp peak in the buffer region has intrigued experimentalists
for a long time (Kline et al. 1967). The significance of the bursting phenomenon is
in part because of its connection to turbulent energy production. We observe from
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Figure 6. Isolines of the streamwise velocity in the z vs. x plane at y+ ≈ 10 for the relative
periodic solution P4. (a) t = 0, (b) T/4, (c) T/2, (d) 3T/4, where T is the period of P4. The
velocity fields were shifted in such a way that a plot at t = T would coincide exactly with
the plot for t = 0. The isolines are thin if the streamwise velocity is positive, and thick if it is
negative. Each of the four plots has 24 isolines equispaced between minimum values which are
−0.5, −1.4, −2.3, −0.5 (in wall units) and maximum values which are 9.4, 9.4, 7.5, 8.3.

figure 5(c) that for P1, which is not a bursting solution, turbulent energy production
attains its maximum value farther away from the wall.

4.3. Breakup and advection of coherent structures

Streaks are the most prominent coherent structures observed in turbulent boundary
layers. In streaky velocity fields, the streamwise velocity is only weakly dependent on
the streamwise coordinate, but varies much more strongly in the spanwise direction.
In contour plots such as those in figure 6, streakiness shows up as isolines that are
nearly parallel to the x-axis. It is clear that streaks at t = T/2 break up at t = 3T/4
and then re-form. The plot at t = 0 corresponds to the initial velocity field of P4.

It is difficult to measure the velocity field as a whole in experiments, and therefore
experimental visualizations of streaks rely on hydrogen bubbles introduced into the
flow by platinum wires and other techniques (Kline et al. 1967; Smith & Metzler
1983). Sometimes streaks are detected using pointwise measurements (Klebanoff et al.
1962). Figure 7 shows the dependence of the fluctuations of the streamwise velocity
on the spanwise direction. The r.m.s. velocity u′+ shown in figure 5(b) was obtained
by averaging over a period and by averaging spatially in the spanwise and streamwise
directions. However, in figure 7, only the time average was used for computing the
r.m.s. velocity.

The possibility that the breakup of streaks observed experimentally could be
an artefact of flow-visualization techniques has been considered by Jiménez et al.
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Figure 7. The plot above shows the variation of the root mean square value of the fluctuating
part of streamwise velocity, which is denote by u′+, in the spanwise direction. The r.m.s. value
is computed at y+ ≈ 10 and x = πΛx .

(2005). It has been suggested that the advection of permanent objects could be
partly responsible for experimental observations. Our computation of relative periodic
solutions (P2 to P5) shows that temporal periodicity and the advection of permanent
objects are not mutually exclusive possibilities. While it is generally implicitly assumed
that the advection of coherent structures could only be in the streamwise direction,
our computation of P2 and P4 shows that the advection could be in the spanwise
direction as well. This could be significant, as will be seen shortly.

The spanwise variation in the strength of the fluctuations of the streamwise velocity
shown in figure 7 for P1 to P6 is reminiscent of experimental data, such as figure 2 of
Klebanoff et al. (1962) for instance. This spanwise variation is not very pronounced
for P1, which is not a bursting solution, but is very pronounced for P2 and P4. Those
are the only two solutions in table 1 which have a spanwise drift. We are led to
conclude that spanwise advection of coherent structures could be a significant source
of the observed spanwise variation of u′+.

4.4. Discrete symmetries of plane Couette flow

The Navier–Stokes equation for plane Couette flow has two discrete symmetries
(Waleffe 2003). The shift-reflection transformation of the velocity field is given by⎛

⎝ u

v

−w

⎞
⎠ (x + πΛx, y, −z),

and the shift-rotation transformation of the velocity field is given by⎛
⎝−u

−v

w

⎞
⎠ (−x + πΛx, −y, z + πΛz).
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Figure 8. Slices through the streamwise velocity field of P1 at (a) t =0 and (b) t = T/2. The
slices were taken at y+ ≈ 9. The plots show that P1 does not have the shift-reflection symmetry.
Isolines of u+ are drawn at 24 equispaced values between a maximum of 11.6 and a minimum
of 1.6. The maximum occurs in the wide gap between isolines in the lower part of either plot,
and the minimum occurs in the gap in the upper part.

Plane Couette flow is unchanged under both these transformations. Thus, if a single
velocity field along a trajectory of plane Couette flow satisfies either symmetry, all
points along the trajectory must have the same symmetries. However, velocity fields
that lie on the stable and unstable manifolds of symmetric periodic or relative periodic
solutions need not be symmetric.

Figure 8 shows that P1 does not have the shift-reflection symmetry. Both the plots
would look very different if they were flipped upside-down and shifted forward by
half the width of the plot in the x-direction. We have verified that P1 does not have
the shift-rotation symmetry either. A close inspection reveals that figure 8(b) can be
obtained by shifting figure 8(a) in the x-direction. In fact, P1 is a relative periodic
solution. During half the period listed in table 1, the initial velocity field of P1 shifts
by sx/πΛx = 0.5 and sz =0.

The averaged velocity field of a long turbulent trajectory of plane Couette flow
satisfies the discrete symmetries to a very rough approximation. However, there is no
reason to believe that such an average has any dynamical significance. The average
could just be a transient state and it may not even lie on an asymptotically invariant
set of the flow.

The six solutions in table 1 satisfy neither the shift-reflection symmetry nor
the shift-rotation symmetry. This implies that the shift-reflection and shift-rotation
transformations (which commute with each other) can be applied to each solution in
table 1 to obtain 18 more solutions.

4.5. Unstable manifolds of the solutions Pi

In their study of the bursting phenomenon in turbulent Poiseuille flow, Itano & Toh
(2001) found that the breakup and re-formation of coherent structures is approximated
well by the unstable manifold of a travelling-wave solution. Among the solutions we
have computed, P1 most resembles the travelling-wave solution of Itano & Toh (2001).
Motivated by that resemblence, we asked if the solutions P2 to P6 could be related to
the unstable manifold of P1.

We perturbed P1 along the single unstable direction that corresponds to that
solution. A perturbation in one sense begins to head towards the laminar solution
straight away and falls into the laminar solution. A perturbation with the opposite sign
heads into the turbulent region (figure 9), but relaminarizes eventually. In contrast,
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Figure 9. The projection of the unstable manifold of P1 to the energy dissipation
vs. energy input plane.

we found that perturbations along the unstable manifolds of the bursting periodic
solutions P2 to P6 do not relaminarize. Thus there appears to be no relationship
between the unstable manifold of P1 and the other solutions.

In addition, unlike P1, the bursting solutions have more than one unstable direction.
For instance, the Arnoldi iteration shows that P2 has at least 11 unstable directions.
These facts suggest that the unstable manifold of P1 cannot by itself explain the
bursting phenomenon in the plane Couette scenario considered in this paper.

5. Discussion
The approach to the bursting phenomenon, and to turbulence in fluid flows more

generally, that this paper advocates is quite simple. As the incompressible Navier–
Stokes equation is an excellent physical model, our approach is to simply compute
solutions of that differential equation. This approach should not be surprising in
itself because the main reason for deriving differential equations is to understand
their solutions. However, well-resolved spatial discretizations of turbulent phenomena
require more than a hundred thousand degrees of freedom and computing solutions
with so many degrees of freedom is non-trivial. We have shown that problems
associated with largeness of the number of degrees of freedom can be overcome.
Indeed, our computations of periodic and relative periodic solutions used as many as
twenty times the number of degrees of freedom in any earlier computation of periodic
solutions.

Having decided to compute solutions, we must decide what type of solutions to
look for within turbulent flows. Here the basic principles of dynamics are of help. The
recurrent nature of the bursting phenomenon has been noted by experimentalists, as
pointed out earlier. Recurrence, which is the tendency of certain dynamical systems
to revisit points close to their initial state in phase space after extended excursions,
has long been a central and unifying idea in dynamics. The relevance of recurrence
to long term dynamics is captured in a most general way by the Poincaré recurrence
theorem (Katok & Hasselblatt 1995). In its early days, this theorem gave rise to
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troubling questions about the foundations of statistical mechanics. The number of
degrees of freedom required for resolving low-Reynolds-number turbulence is large,
yet far smaller than the number of degrees of freedom typical of statistical mechanics.
Another significant difference is that low-Reynolds-number turbulence is governed by
equations that are not Hamiltonian and in which viscosity damps high wavenumbers.
Therefore, there is reason to think that a point of view based on recurrences will be
useful for understanding turbulence.

A combination of local instability, which is a well-known feature of turbulent flows,
and boundedness in phase space naturally suggests the existence of periodic motions.
The closing lemma is a principle that suggests that dynamics can be understood
quite generally in terms of periodic solutions (Katok & Hasselblatt 1995). It has
been proved in a few restricted settings and serves as a beacon. While considering
the closing lemma, it is worth noting again that the right notion of recurrence
depends upon invariance properties of the underlying differential equation. If the
differential equation is unchanged by a continuous group of transformations, then it
is appropriate to look for relative periodic solutions.

In some well-understood settings, it is possible to prove the existence of infinitely
many periodic solutions (Moser 1973). Even though turbulent phenomena are not
known to fall under any of these settings, there is reason to think that there are
infinitely many periodic and relative periodic solutions embedded within turbulent
flows. The lack of complete theoretical results should not be an impediment to
computation, since the major purpose of computation is to render tractable problems
that are beyond the reach of theory. An advantage of computing many of these
solutions is that they can help us understand the dynamics as a whole in terms of
accurately computed periodic solutions. In addition, these periodic solutions could
serve as a basis to understand turbulent statistics using the periodic orbit theory
(Cvitanović et al. 2005).

It is natural to expect different solutions of the same differential equation to bear a
relationship to one another. In the case of linear differential equations, the principle
of linear superposition gives this relationship. For chaotic nonlinear systems, the
relationship between solutions is much more complicated and intriguing. In several
instances, the precise nature of the relationship is given by symbolic dynamics (Moser
1973). Algorithms for computing nonlinear systems can be based upon symbolic
dynamics (Viswanath 2003, 2004). Those algorithms made it possible to compute the
fractal structure of the well-known Lorenz attractor. Although the fractal structure
of the Lorenz attractor was deduced by Lorenz (1963), its computation became
possible only with algorithms based on symbolic dynamics. The Lorenz equations
were derived to illuminate the essentially deterministic nature of turbulence and
they have been completely successful in that respect. Computations of the strange
attractor of the Lorenz equations can likewise serve as models for computations of
turbulence.

The Lorenz computations based on symbolic dynamics illustrate the advantanges
of periodic solutions over steady solutions in understanding the dynamics as a whole.
It is possible to compute periodic solutions accurately that are as close as machine
precision permits to random points on the Lorenz attractor, and thus obtain a very
good understanding of the dynamics (Viswanath 2003). Such a precise understanding
cannot be obtained using steady solutions alone. To understand important aspects
of turbulent boundary layers such as the turbulent energy production in the buffer
layer, it is likewise necessary to go beyond steady solutions and travelling waves and
compute periodic and relative periodic solutions.
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It would be premature to suggest that the various solutions embedded within
turbulent flows can be described using symbolic dynamics. Yet, it would be surprising
if these solutions did not bear a relationship to one another. Discovering such a
relationship would be a major advance in our understanding of turbulent flows.

This paper has asserted the existence of six solutions of turbulent plane Couette
flow. Error estimates for these solutions were supplied in table 1. We argued in § 3 that
these solutions, along with their error estimates, can be verified using a good code
for direct numerical simulation of channel flows. Such quantitative reproducibility is
a step forward in the area of turbulence computation.

The author thanks P. Cvitanović and F. Waleffe for many helpful discussions;
J. F. Gibson for checking some of the solutions using his Channelflow code; and
G. Kawahara and S. Toh for clarifications. This work was supported by the NSF
grant DMS-0407110 and by a research fellowship from the Sloan Foundation.

Data for solutions reported in this paper can be obtained from the author.
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